
The State of Web3 User
and Developer Experience

CryptoEQ™ stands at the forefront of the cryptocurrency analysis and ratings
sector, o�ering unparalleled insights and expertise. Our mission is to demystify
the complexities of the crypto market, providing investors and traders with the
most trusted, objective, and detailed analysis available. Through our propri-
etary algorithms, exhaustive research, and a vibrant community, we empower
our users to navigate their investment journey with confidence and precision.

We're excited to present this in-depth research report on the State of Web3 User
and Developer Experience. Combining our deep analysis skills with insights from
Radix contributors, this research pushes the boundaries of blockchain knowl-
edge. It aims to be both informative and enjoyable, and breaks down the com-
plex stu� so you can join in the blockchain adventure with ease and confi-
dence.

The State of Web3 User and Developer Experience

01

User Experience

�UX� and Developer

Experience �DX�

The State of Web3 User and Developer Experience

Introduction

The blockchain economy has relentlessly expanded over the past several years,

rising from a single smart contract platform in Ethereum to a robust industry of

 of blockchains, ecosystems, and applications. One of the key factors

determining which platforms will be adopted, or those that fall to the wayside,

are the User Experience (UX) and Developer Experience (DX) they o�er, as that

determines how easy, intuitive, and safe it is to use and build blockchain dApps.

hundreds

Why is User Experience and Developer

Experience Important?

As blockchain ventures from its niche origins into mainstream consciousness, the

imperative of a seamless UX has never been greater. Potential users - especially

those that haven’t yet used Web� - expect intuitiveness and security akin to the

conventional Web� digital experience. But over the last few years, blockchain has

been anything but intuitive and secure.

3 - 93

https://www.coingecko.com/

The State of Web3 User and Developer Experience

Users have to contend with complex technologies, intricate cryptographic

procedures, and confusing and opaque transactions. The challenge for

blockchains today is abstracting away these complexities without compromising

on the core principles of decentralization, security, and transparency. For

platforms like Ethereum, Solana, Aptos, Radix and others, achieving a UX that is

intuitive and safe enough for mainstream adoption is not just desirable - it's

indispensable.

Yet, an intuitive UX is only half the equation. The backbone of any successful

blockchain platform is its community of developers, the architects who build,

innovate, and expand its ecosystem of decentralized applications (dApps). The

programming language, tools, resources, and support given to developers is

paramount to allowing these developers to build dApps quickly, allow new

developers to come into the space, o�er dApps that resonate with end-users, and

do so in a way that is secure.

With millions of dollars lost to hacks in crypto and DeFi still occuring every week,

much needs to be done to give developers the right tools to build securely. Web�

and DeFi will �nd it hard to appeal to both mainstream retail users, and

institutional adopters, with the security practices of today.

The symbiotic relationship between a thriving developer community and a

growing user base cannot be overstated. Platforms prioritizing UX and DX thus

position themselves to initiate a �ywheel of user and developer growth as they

o�er the best possible experiences for both demographics.

Top 10 crypto and DeFi hacks: Source

4 - 93

https://rekt.news/leaderboard/

The State of Web3 User and Developer Experience

5 - 93

The State of Web3 User and Developer Experience

Scope

This report provides a holistic analysis of the UX and DX o�ered by a selection of

leading Web� platforms chosen to represent the o�erings across the market.

These are:

Ethereum, the most popular smart contract platform today, and whose

Ethereum Virtual Machine (EVM) is the most widely used programming

environment used not just by Ethereum, but by many other layer 1 and layer

2 smart contract platforms;

Solana, a high throughput chain with its own Sealevel Virtual Machine (SVM),

considered by many to be Ethereum’s most prominent challenger;

Aptos, with the Move programming language and MoveVM, o�ers a new

object-based architecture that promises to improve developer productivity

and dApp security, and introduces multiple user experience innovations as a

result.

Radix, with its Scrypto programming language and Radix Engine Virtual

Machine, brings a new “asset-oriented” architecture that also promises to

improve developer productivity and provide a more intuitive and secure user

experience.

To compare the UX and DX across these platforms, this report focuses on how

tokens, accounts, smart contracts, and transactions work within the respective

virtual machines, as this is what ultimately determines the UX and DX that the

platforms can o�er.

For DX, this report focuses on the programming languages used by developers to

build dApps, examining how these have been architected to support how quickly,

intuitively, and securely developers can build dApps.

6 - 93

The State of Web3 User and Developer Experience

For UX, this report focuses on the capabilities of the mobile and desktop wallets

available for these platforms, how the underlying platforms support those

capabilities, and whether this results in an intuitive, easy, and secure experience.

Last, we also compare the tooling and resources available to each of the

respective developer ecosystems to help them learn and build Web� and DeFi

dApps.

Executive Summary

Ethereum, long recognized as a leader in the blockchain world, has crafted a

diverse and mature ecosystem that has become the industry benchmark.

Despite its wide adoption, Ethereum faces challenges in user-friendliness and

security, with users required to navigate a lot of the complexity of using

blockchain directly, such as blind signed transactions, reliance on seed phases,

and potential for wallet drains. This has resulted in millions of dollars of user

funds being lost, and many of these issues cannot be �xed easily due to

Ethereum’s architecture.

From a development perspective, Ethereum o�ers a mature platform for dApp

development and developer tooling, but as �rst mover, there are complexities in

Solidity and the EVM that results in a steep learning curve to building secure

dApps, with the need to perform signi�cant validation and audit.

Overall, Ethereum and the EVM has a signi�cant lead in adoption, with by far the

most users, liquidity, and dApps. Its momentum will carry it forward for many

years to come and we can expect more and more third party tools such as Tru�e

and Hardhat to help cover shortfalls in the underlying architecture.

Solana

Solana, with the SVM virtual machine, stands out with its high-speed and low-cost

transactions, non-EVM design, and dedication to the monolithic/integrated design

structure, improving composability.

7 - 93

The State of Web3 User and Developer Experience

Solana's approach to user experience, characterized by low fees and a uni�ed

Token Program, simpli�es transactions. But due to its account-based architecture,

blind signed transactions and wallet drains are still all too common, meaning that

users must be wary of using the wrong account, interacting with the wrong smart

contract, impacting trust.

On the developer side, Solana has a fast-growing developer community, and Rust

is much loved. Developers are however required to deal with some low-level

intricacies associated with Solana’s parallelized execution model.

Solana is a formidable challenger and continues to gain the most adoption

outside the EVM, with signi�cant user and liquidity growth over 2023.

Aptos

Aptos shares much of the same high-level objectives and blockchain design

concepts as Solana but signi�cantly di�ers in its implementation thanks in large

part to the Move programming language and MoveVM, which has an object-based

model to assets, as opposed to the account-based model for Ethereum and

Solana.

Aptos o�ers an innovative token standard, emphasizing ease of use and �exibility,

and o�ers an enhanced user experience by making tokens more predictable,

allowing wallets to recognize the tokens in a user’s account (which Solana and

Ethereum are not able to do), and provides enhanced security through rotatable

signing factors.

On the developer side, Aptos’ Move programming language o�ers an intuitive

experience with its object model, solving issues caused by the account model

used by Ethereum and Solana. Aptos’ Move Prover tool further supports the

integrity of smart contracts, bolstering security.

Aptos is an up and coming ecosystem, o�ering an improved UX and DX but has a

smaller ecosystem than Ethereum or Solana.

8 - 93

The State of Web3 User and Developer Experience

Radix

Radix has taken what it calls a “full stack” approach to designing its layer 1,

building its own consensus algorithm, execution environment, programming

language, and wallet, with the aim of o�ering an improved UX and DX. Many

features that are tacked-on on other platforms via third party tooling are

enshrined as native features of Radix, improving trust and reliability. Similar but

di�erent to Aptos, Radix uses an object-centric design that it styles as an “asset-

oriented” programming environment.

This results in a more transparent and predictable user experience as the platform

natively understands and governs tokens and transactions. Radix’s architecture

also solves other UX issues such as wallet drains, blind signed transactions, or

seed phrases. On the developer side, many commonly used features, such as

tokens, NFTs, how transactions are accounted, and how permissions are built into

smart contracts, are provided as native �rst class features of Radix’s Scrypto

programming language and Radix Engine execution environment, improving

developer productivity and security as these features do not need to be built by

developers, but instead are customized by them, reducing the chances for error,

while still providing the �exibility to build any dApp they desire.

This positions Radix strongly for increased user and developer adoption, but, as

Radix’s smart contract capabilities only just recently launched in Q� 2023, the

ecosystem is behind others so far in adoption.

9 - 93

The State of Web3 User and Developer Experience

Conclusion

While Ethereum is the most widely adopted smart contract blockchain today, the

limitations of the Ethereum Virtual Machine (EVM) hold back its ability to o�er

mainstream-ready user and developer experiences. This has burdened users with

insecure security practices, resulting in frequent hacks and exploits. Numerous

third-party dApps and wallets look to help improve the user’s experience and

safety, but ultimately, there is only so much that can be done due to the inherent

constraints of the EVM design.

Solana, a “next generation” smart contract blockchain, o�ers user experience

(UX) and developer experience (DX) innovations with its Phantom wallet, Rust

programming language, and low transaction fees. Similarly, Aptos, with MoveVM,

introduces several further innovations to make tokens more predictable and

development more intuitive. Radix, with its recent mainnet upgrade, takes it all

one step further with assets as a native �rst-class feature of the programming

environment, improving not only transparency and con�dence for users but also

developer productivity and security, setting a new benchmark for Web� UX and

DX. By solving the most comprehensive UX and DX challenges, Radix sets itself up

as a clear leader for user and developer experience. While Radix’s ecosystem has

grown quickly since the launch of its mainnet upgrade, it requires signi�cant user,

developer, and liquidity growth before it can catch up to Ethereum and Solana.

A high-level breakdown of how each of the Layer �s in scope approach a variety of

UX and DX design challenges has been summarized in the table below.

10 - 93

Executive Summary - Comparison of Platforms’ User Experience and Developer Experience

Tokens, NFTs, and Accounts

Ethereum Solana Aptos Radix

Summary A token-holding account is a
line item in a smart contract.

The behaviors of the token
are governed by the smart
contract developer.

As a result:

A token-holding account
is a line item in a smart
contract created by a
developer e.g. SPL.

As a result:

A token-holding account
is a line item in a smart
contract object created
by a developer.

As a result:

A token-holding account
is a container that holds
tokens inside it, as if it
were a physical object.

The behaviors of the
token are governed by
the virtual machine.

As a result:

Token Behavior The behavior of each token is unpredictable. Tokens follow less
unpredictable
behaviors.

Tokens follow
predictable behaviors.

Malicious
Tokens

Tokens with hidden malicious behavior that can drain a
user’s account are commonplace, and users have to know
to avoid interacting with these tokens.

Aptos Fungible Asset
Standard and
pre-signature
transparency removes
tokens as smart
contract code, making
malicious tokens less
prevalent.

Malicious tokens are
impossible.

Understanding
a Token

A user would have to read the underlying smart contract
code to know what behaviors a token is capable of, and if
it was secure.

Varies depending on
wallet.

The wallet instantly
displays all the possible
behaviors of a token.

Import Token Wallets do not know what tokens a user holds. Users have
to manually “import tokens” into their wallet.

Wallets instantly know
what tokens a user
holds. There is no need
to “import tokens”.

Wallets instantly know
what tokens a user
holds. There is no need
to “import tokens”.

Custody Users never actually custody a token in their account, as
their account is a line item in a developer’s smart contract
(that the developer may control).

Users custody the
token/object directly.

Users custody tokens
inside their account, as if
it was a physical object
in a container.

Seed Phrases Access to an account is controlled by a single seed
phrase.

Consists of key pairs
but can be rotated and
recovered unlike
traditional BTC or ETH
wallets.

Access to an account is
controlled by an arbitrary
combination of signing
factors that can be
rotated. (While live on
the ledger, not yet
enabled in wallet)

Spend
Approvals

Users are required to provide approval to smart contracts
to spend their tokens in other smart contracts.

Spend approvals are
not needed, as tokens
are represented as
objects.

Spend approvals are not
needed, as tokens are
represented as objects.

Transactions

Ethereum Solana Aptos Radix

Summary A transaction is a signed hash requesting a single
smart contract to execute an instruction.

As a result:

On-chain state is
organized into resources
and modules. These are
then stored within the
individual accounts.
Transactions are state
changes to these
elements.

As a result:

A transaction is a signed
manifest of human-readable
instructions defining asset
movements and method calls
between smart
contracts/accounts.

As a result:

Blind Signing Transactions are “blind signed” without a user
knowing what a transaction will do.

Transactions are blind
signed although there are
some additional
protective measures in
place over and above
Ethereum and Solana.

Transactions are expressed in
human-readable language.

Contract Calls A transaction can only call one smart contract at
once. Complex transactions require a custom smart
contract to be deployed to orchestrate a series of
downstream calls for the transaction.

A single transaction can
call a single module or
can be a complex
transaction called by
multiple modules.

A transaction can call multiple
smart contracts all at once. No
custom smart contracts need
to be deployed to execute
complex transactions.

Guarantees Users can’t set network-guaranteed conditions that a
transaction must achieve.

Users can set protective
measures to ensure only
certain outcomes are
possible.

Users can set
network-guaranteed
transaction outcomes, e.g. this
swap must return 100 tokens,
otherwise the transaction is
aborted.

Delegated
Transaction
Fees

Transaction fees must be paid by the account signing
the transaction

Transaction fees can be
paid by other accounts.

Any account can pay a
transaction fee.

Wallets & Login

Ethereum Solana Aptos Radix

Wallets and UI A multitude of
mobile/desktop wallets
exist.
Users can add their
accounts to a combination
of browser-based or
mobile wallets.

A multitude of
mobile/desktop wallets
exist.
Users can add their
accounts to a combination
of browser-based or
mobile wallets.

A handful of wallet
options, including
third-party
development.

A handful of wallet options,
including the mobile-first Radix
Wallet that can connect to
desktop when needed.

Identity and
Login

Users log in to Web3 with
an account that can hold
tokens.

Secured by a seed
phrase.

Users log in to Web3 with
an account that can hold
tokens.

Secured by a seed phrase.

Users log in to Web3
with an account that
can hold tokens.

Secured by a seed
phrase.

Users log in to Web3 with a
dedicated smart contract that
represents their persona.

Secured by multifactor
authentication and recovery.
(While live on the ledger, not
yet enabled in wallet)

Executive Summary - Comparison of Platforms’ DX

Developer
Experience

Ethereum Solana Aptos Radix

Language
Adoption &
Usability

How are tokens
created?

Copy + paste of ERC20
(or equivalent code)

Copy + paste of SPL
token standard (or
equivalent code)

Copy + paste of the Aptos
Coin Standard (or
equivalent code)

Function or API call to
platform, with
parameters, to create a
token - as tokens on
Radix are native

Does the platform
enforce asset
standardization and
guarantee how
tokens and NFTs
behave, reducing
the chances for
hacks and exploits?

No No Yes Yes - as tokens on
Radix are native

Do transactions
include guardrails to
ensure accounting
is correct e.g.tokens
don’t get lost?

No - the developer is
responsible for defining
how the accounting for a
token is done

No Yes - some Yes - the execution
environment Radix
Engine natively handles
accounting

Can you call
multiple smart
contracts with a
single atomic
transaction?

No - you would have to
deploy a specific smart
contract which would
then call other smart
contracts

No - you would have to
deploy a specific smart
contract which would
then call other smart
contracts

No - you would have to
deploy a specific smart
contract which would then
call other smart contracts

Yes - Transaction
Manifest can call
multiple smart contracts
in one atomic
transaction.

Is re-entrancy
possible?

Yes Yes No No

Is there an on-chain
way to reuse
common logic?

No Yes - Solana Programs Yes- reusable Modules Yes - Radix Blueprints

Are there native
features to easily
allow for the
creation of complex
authorization and
access systems?

No No No Yes - Badges and native
role based access
control

Developer Tooling
and Ecosystem

How large is the
developer
ecosystem?

Huge Large Medium Medium

Third party code
repositories

Plentiful Medium Limited Limited

The State of Web3 User and Developer Experience

02

User Experience

�UX�

The State of Web3 User and Developer Experience

User Experience

The experience for users of Web� and DeFi today is complex and high risk.

To do things such as set up a new account, or perform a swap between two

tokens, users are confronted with deeply technical requirements that they need

to understand and accept, or if not, they could lose their assets.

To assess the user experience o�ered by our selection of leading platforms, we

break this down into broadly �ve questions:

Tokens and NFTs - are assets predictable, transparent, and secure?

Transactions - are transactions predictable, transparent, and secure?

Accounts - are accounts easy to set up and secure?

Wallets - is the user interface easy to use and intuitive?

Identity and Login - is my Web� identity private and secure?

Each of these areas represents a core part of the crypto, Web� and DeFi

experience.

Tokens and NFTs

The role of tokens and NFTs in the blockchain ecosystem is undeniable. They are

representations of value, be it monetary or symbolic. The simplicity with which a

user can understand, trust, and interact with these assets directly impacts the

adoption rate of the platform they're hosted on. A complicated and

untrustworthy system discourages mainstream users and institutions alike.

After all, nobody wants to wade through complex smart contract code to ensure

the safety of their assets, nor should they have to fear hidden vulnerabilities that

could be exploited by malicious entities. In other words, they can simply be a

question: do I know and trust what I am holding?

16 - 93

The State of Web3 User and Developer Experience

Ethereum

Ethereum pioneered how assets are represented on decentralized networks by

allowing developers to deploy smart contracts with arbitrary logic and hold

arbitrary state. No longer were tokens limited just to the primary, native token of

the network, such as BTC for Bitcoin, or LTC for Litecoin; but instead, anyone

could deploy their own token to the Ethereum network, giving rise to the ICO

boom of 2017.

With this logic and state, Ethereum utilizes a model where a token is a smart

contract. The smart contract contains a list of balances inside it, and those

balances are controlled by logic deployed by that smart contract’s developer.

The Ethereum community has coalesced around a series of smart contract

templates, known primarily as ERC (Ethereum Request for Comment) standards,

to create some standards and conformance across the tokens created. The most

popular standards include:

 This is the most widely used standard

for creating fungible tokens on Ethereum. A fungible token is one where each unit

is interchangeable and indistinguishable from another unit. Examples include

cryptocurrencies like DAI or USDC. ERC-�� de�nes a set of functions that the

token's smart contract must implement, enabling functionalities like balance

inquiries, token transfers, and getting the total supply of tokens.

ERC-�� - The Standard for Fungible Tokens:

): Unlike ERC-�� tokens, which are

interchangeable, ERC-��� tokens are unique. Each token has distinct information

or attributes, making them distinguishable. This property is ideal for digital

collectibles, art, or any digital asset where individuality and provenance are

crucial. The standard ensures that each token has a unique identi�er, allowing for

the transfer and inquiry of individual tokens.

ERC-���- Non-Fungible Tokens (NFTs

17 - 93

The State of Web3 User and Developer Experience

An evolution in Ethereum's token standards,

ERC-���� allows a smart contract to produce fungible and non-fungible tokens. It

is optimized for scenarios where users may need to batch multiple items, reducing

the gas costs associated with deploying and managing multiple token types.

ERC-���� - Multi-Token Standard:

Since tokens on Ethereum are governed by smart contract code, they are

transparent by nature. Anyone is able to read the code to understand how the

token behaves. However, this requires someone to actually be able to read and

understand that code in order to ascertain whether the token is in fact secure.

This is a severe limiter in establishing a user-friendly UX.

Furthermore this approach to representing tokens has given rise to a multitude of

user experience issues, such as:

Requiring users to provide “spend approval”, which is kind of like giving a third

party �ntech access to spend the money in your bank account, for it to provide

you services.

An example spend approval

18 - 93

The State of Web3 User and Developer Experience

19 - 93

The State of Web3 User and Developer Experience

Users needing to be wary not to interact with a “malicious” token, that could

potentially drain the user’s account if a transaction is signed interacting with that

account.

Source

Users not actually custodying their tokens in their account, as their account

is just a record inside a third party developer’s smart contract.

Wallets not knowing immediately all the tokens in a user’s account,

requiring users to manually “import” the less common tokens to wallets like

MetaMask.

20 - 93

https://twitter.com/WaveNodeValid/status/1714741744376447402

The State of Web3 User and Developer Experience

Manually importing a token

Of course, it is worth stating that as the emphasis and adoption of L� platforms

continue to expand (Optimism, Arbitrum, etc.), Ethereum will continue to trend

towards a base settlement/security layer, meaning that it is far less likely to need a

comprehensive UX. But these UX challenges are presented by the capabilities of

the EVM itself. And so any L� that utilizes the EVM will also face these same UX

issues.

21 - 93

The State of Web3 User and Developer Experience

Solana

While most blockchain platforms use the term "smart contract," Solana prefers

the term "program." Similarly, instead of the commonly used "token standard,"

Solana introduces the concept of a "token program." These programs are

primarily written in Rust and are housed in the Solana Program Library (SPL). SPL

serves as a repository of on-chain programs curated by Solana's core team.

Tokens minted on this platform are often referred to as SPL tokens.

The SPL standard allows for creating fungible tokens on the Solana blockchain,

allowing developers and projects to create new assets using the standard easily.

This is expanded to NFTs through the Metaplex protocol. Metaplex allows the

creation of unique, non-fungible tokens. Solana's ecosystem has several wallets

that support SPL tokens and Metaplex NFTs. The Phantom wallet, for instance,

o�ers a smooth user experience and integrates both SPL tokens and NFTs

seamlessly.

A notable feature of Solana's system is the uni�ed Token Program that facilitates

the minting, transferring, and burning of both fungible assets and NFTs. This

means that for every new asset, there's no need to deploy a separate smart

contract. Instead, an original "mint authority" address is designated, which acts

similarly to a smart contract address in the Ethereum ecosystem.

Solana’s Token Program improves upon Ethereum’s ERC approach because the

SPL is on-chain and there is less likelihood for a developer to make a mistake

instantiating a token from the SPL, as opposed to Ethereum’s manual approach.

But while the SPL provides a base layer of security, the implementation speci�cs

can introduce vulnerabilities. Thus, users have to be cautious and, in many cases,

place trust in developers and their code.

22 - 93

The State of Web3 User and Developer Experience

Other user experience issues still manifest due to Solana and Ethereum sharing a

similar smart contract account-based model to asset representation. Issues like

wallet drains, needing to read the underlying code to truly understand how a

token behaves, and the need to manually import tokens into your wallet still

persist.

Aptos

To reimagine the blockchain experience, Aptos introduces a

new approach toward token and NFT standardization that, in their eyes,

optimizes for ease of use, security, and �exibility over competing blockchains.

Similar to Solana, Aptos incorporated its own distinct token standard, separate

from the EVM, named the Aptos Coin Standard. Unlike with the EVM (but similar to

the Solana approach), the MoveVM removes the need for a new smart contract for

every new token issuance, greatly reducing the associated gas costs. Within this

design, there are two primary token standards:

 This standard helps to streamline the

tokenization of diverse assets such as commodities, real estate, and in-game

assets. Compared to Ethereum and Solana, Aptos simpli�es creating and

managing fungible assets into objects.

Aptos Fungible Asset Standard:

 This standard o�ers a standardized approach

to de�ning unique digital asset ownership on the Aptos blockchain. Aptos

rede�nes NFT creation and management by utilizing object-oriented models.

With an emphasis on �exibility, composability, and scalability, the standard sets

itself apart by allowing tokens to possess other NFTs, introducing a new layer of

composability. It also promotes extensibility, supporting custom data and

functionalities without altering the core framework.

Aptos Digital Asset Standard (NFTs):

The result of this object model to representing assets means that Aptos solves

many of the aforementioned issues, for example:

23 - 93

The State of Web3 User and Developer Experience

tokens on Aptos follow less unpredictable behaviors

the Aptos Fungible Asset Standard and pre-signature transparency removes

tokens as smart contract code, making malicious tokens less prevalent

spend approvals are no longer necessary as token objects are transferred

between accounts as opposed to the Ethereum and Solana model of tokens

being a balance in a smart contract

wallets on Aptos now instantly know what tokens a user holds: there is no

longer a need to “import tokens”, as users actually custody their tokens in

their account directly.

Using objects rather than the traditional account based model, Aptos o�ers an

enhanced user experience over Ethereum and Solana, simplifying asset transfers

and ownership.

Radix

Radix takes Aptos’ object model even further, enshrining tokens and NFTs as

, understood and governed by the platform, entirely

distinct and separate from smart contract code.

native �rst class objects

Unlike many existing platforms that treat assets as secondary elements often

externalized from the core system (see for instance how tokens on Ethereum are

represented as ERC�� contracts built by a developer, not enshrined in the core

system), Radix integrates assets directly within the core functionality of its

network.

Here, assets such as tokens or NFTs are not just additional entities; they are

integral "resources" that Radix’s virtual machine, Radix Engine, recognizes,

controls, and guarantees the behavior of.

24 - 93

https://learn.radixdlt.com/article/what-are-native-assets

The State of Web3 User and Developer Experience

This emphasis on native assets addresses a critical challenge in the DeFi

landscape: clarity and trust. In many traditional Web� wallets, users face

ambiguity regarding their holdings. Tokens, especially those of the LP kind,

frequently lack transparent details, necessitating users to rely on external

platforms or decentralized apps for insights. This approach not only complicates

the user experience but also introduces potential vulnerabilities from external

dependencies.

Radix's native assets, however, ensure a direct and transparent representation.

Each asset detail, from basic token attributes to complex NFT de�nitions, resides

within the native asset's resource con�guration. This approach eliminates the

need for users to traverse intricate smart contract codes or external sites to

understand how a token behaves. Because the behavior of assets on Radix are

guaranteed by the Radix Engine virtual machine, this o�ers a clearer, more direct

understanding of what a token is capable of doing, shielding users from potential

risks associated with external asset veri�cations, and improving trust. This

profoundly transforms the utility of the Radix Wallet. Armed to access each asset's

con�guration directly, the wallet o�ers transparent details on the details

associated with each asset and the behaviors that its capable of, enhancing the

user experience.

25 - 93

The State of Web3 User and Developer Experience

Radix labels itself the “Full Stack for DeFi” Source

By making assets a foundational aspect of its platform, this solves many of the

aforementioned user experience issues:

26 - 93

https://www.radixdlt.com/

The State of Web3 User and Developer Experience

Spend approvals are no longer necessary (like Aptos)

Users no longer need to be wary of “malicious” tokens that could drain a

user’s account, as the behavior of tokens on Radix is governed by the Radix

Engine virtual machine.

Because token behavior is controlled by Radix Engine, the Radix Wallet can

show exactly the behaviors that a token is capable of, such as if a token can

be burned, recalled, or new supply minted.

Users actually custody their tokens in their account, as a token is like a

physical object inside the account.

The Radix Wallet knows all the tokens in a user’s account immediately,

solving the problem of having to manually import tokens.

Transactions

A transaction, in essence, is when a user updates the state of the ledger by signing

a set of instructions. Most transactions involve transferring of funds from one

account to another. It’s important for these fund movements to be correct, as if

there is misapplied logic, then users could lose funds (or some users gain funds

unexpectedly). Most transactions require a “gas” fee, which pays for the work

performed by nodes to process the transaction.

Here’s a summary of how transactions work on our selected platforms.

Ethereum

Transactions on Ethereum can either be for the native asset ETH only; or they are

calls to contracts, such as ERC�� contracts. In both cases, the user signing the

transaction must pay gas fees from the account they wish to use, meaning that

users must have some ETH in each account they wish to use.

27 - 93

The State of Web3 User and Developer Experience

For contract calls, a transaction can call only one smart contract. That smart

contract then serves as the gateway to further downstream contract calls. Some

transactions can involve more than 10 di�erent smart contracts calling further

downstream contracts to update their own internal state, forming long chains of

“delegate calls”. A major limitation of this approach is that if one of those

downstream contract calls fails, all the smart contracts have to be able to cater to

those failure modes, which can cause issues for users and cause additional

complexity for developers.

Another barrier facing Ethereum’s UX is that the platform doesn’t understand,

natively, what any token is other than ETH. To Ethereum, an ERC�� token is an

arbitrary set of numbers that, if updated, must obey the logic de�ned by the smart

contract. There is no on-chain requirement for ERC�� tokens to follow the same

behaviors. It’s just a standard that a developer can manually choose to follow, if

they want. This reduces the trust in ERC�� tokens as users don’t actually have

guarantees on what a token will do, e.g. if the accounting will be performed

correctly, or worse, if signing a transaction with it means that other tokens could

be drained from the user’s account.

Furthermore this model means that when users interact with any smart contract,

they need to “blind sign” their transactions. Blind signing a transaction means

that wallets present a hash to the user - a string of what appear to be

unintelligible letters and numbers, that the user signs. The wallet can’t present

what the transaction will do in human-readable terms, because neither Ethereum

nor its wallets knows what a token is, as it is just an arbitrary number that obeys

arbitrary code in a smart contract.

Users can therefore be easily tricked into signing something they didn’t actually

mean to, as a hash could be to approve the transfer of tokens inside a smart

contract, or it could be to approve a smart contract to have approval to spend the

user’s tokens, without their consent, commonly known as a “wallet drain”.

28 - 93

The State of Web3 User and Developer Experience

Metamask’s non-user-friendly UI for signing a message.

From a safety angle, an oblivious user might unintentionally approve malicious

activities. Moreover, from an adoption perspective, the daunting deluge of

cryptographic information might repel prospective enthusiasts. While MetaMask

has been a game-changer, its mode of transaction depiction might hinder more

expansive adoption.

29 - 93

The State of Web3 User and Developer Experience

Third-party solutions like WalletGuard.app have entered the scene to counter

these challenges. WalletGuard aims to render Ethereum's enigmatic transaction

prompts into more digestible, human-friendly formats. This enhancement aids

users in grasping the repercussions of their actions. Yet, these remedial tools,

although laudable, are more of a band-aid to the existing infrastructure rather

than a fundamental, systemic remedy, as the issue stems from how tokens are

represented in the EVM. Depending on such external utilities introduces another

layer of complexity for developers, often leading to increased integration labor

and possible vulnerability spots.

Solana

Solana’s Phantom wallet aims to improve the user experience in earlier

blockchain wallets. This design philosophy is evident in how it presents

transaction details. Unlike MetaMask's often cryptic messages, Phantom lays out

information in a more digestible manner, reducing the knowledge gap. However,

it does not completely solve for the issues outlined above for Ethereum, such as

wallet drains or blind signing, as can be seen in the example below.

30 - 93

The State of Web3 User and Developer Experience

Source

Phantom Wallet also features customizable gas fees, allowing users to make

informed decisions that optimize their transactions based on the prevailing

network conditions.

31 - 93

https://twitter.com/Peoplesmarket87/status/1749328176478888303

The State of Web3 User and Developer Experience

Source

Like Ethereum, a transaction can only call one smart contract at once. Complex

transactions require a custom smart contract to be deployed to orchestrate a

series of downstream calls for the transaction.

Aptos

Due to Aptos’ new approach to accounts and “resources” on its blockchain, it is

able to provide several improvements to transaction UX over Ethereum and

Solana.

Notably, Aptos integrates transaction viability protection, which safeguards users

against inadvertent transactions by placing constraints on each transaction's

viability via a sequence number, expiration time, and chain identi�er, shielding

users from risks such as replaying a transaction that has already been committed,

has expired, or has been committed on a di�erent blockchain, such as a test

network.

32 - 93

https://www.thecryptobreakdown.com/wallets/phantom-wallet-review

The State of Web3 User and Developer Experience

Additionally, the mechanism of pre-signature transaction transparency allows

wallets to interpret transaction results in a readable format before the user signs

it. This is pivotal in mitigating potential threats associated with signing harmful

transactions. This feature achieves this by o�ering a detailed depiction of

potential transaction outcomes before endorsement. To further fortify against

fraudulent activities, this function can assimilate data on previous attack patterns

and potentially harmful smart contracts.

Radix

Radix has developed an entirely novel approach to how transactions work on top

of a public ledger, called the “Transaction Manifest”.

The Transaction Manifest is structured as a series of calls to each account or smart

contract, specifying how native tokens should move between those accounts or

smart contracts, and specifying what methods to call on smart contracts.

This opens up a number of advantages, namely:

33 - 93

The State of Web3 User and Developer Experience

Transactions on Radix aren’t limited to just calling a single smart contract -

it’s possible for a transaction on Radix to call many accounts and smart

contracts atomically, all at once, and if any of those calls fails for some

reason, the entire transaction is aborted without needing any special logic

built by the smart contract developer to handle such an occurrence.

Safer transactions because the Radix Engine virtual machine natively

understands what tokens are, and natively handles the safe and accurate

accounting that must occur during a transaction, such as tokens shouldn’t

be spent twice, or tokens shouldn’t go missing during a transaction, which is

logic that developers on Ethereum and other platforms must implement

themselves. Radix Engine handles this accounting via containers for tokens

called vaults (while assets are at rest) and buckets (while assets are on the

move), and these must resolve correctly before the end of a transaction if

the transaction is to be accepted.

The Transaction Manifest also allows applications to be built that can

compose multiple smart contracts atomically on the �y, without needing a

special smart contract to be deployed just to orchestrate the transaction,

opening up new use cases for applications built only in website front ends.

34 - 93

The State of Web3 User and Developer Experience

Source

Furthermore, as the Transaction Manifest speci�es how tokens move between

accounts, all transactions on Radix are human-readable. They do not need to be

blind signed, as the Radix platform natively understands how tokens behave, and

transactions are expressed to the Radix platform in human-readable terms.

This innovation ensures that users can comprehend the essence of their

transactions irrespective of their familiarity with blockchain intricacies. A simple

transaction like withdraw 20 USD tokens from my account and deposit 16.32 GBP

tokens in my account is presented in human-readable-language, eliminating the

ambiguities of blind signing on other platforms (see graphic below).

35 - 93

https://twitter.com/radixdlt/status/1539570758166487040

The State of Web3 User and Developer Experience

Metamask vs. RadixWallet reviewing a transaction UI.

Last, Radix users can also set customizable “Guarantees”, such as if they are

conducting a swap between two assets, the network will guarantee that at least a

certain amount of tokens are deposited into their account, or if that guarantee

isn’t met, the transaction is aborted.

36 - 93

The State of Web3 User and Developer Experience

Source

37 - 93

https://twitter.com/radixdlt/status/1704875212787913190

The State of Web3 User and Developer Experience

Account Management

Accounts are where a user stores their assets. Accounts have typically been

secured by users with a private/public key pair, where the private key is secret and

used to secure the account, and the public key is mapped to the account’s

publicly known address, such as “�x�”.

But private keys are long strings and hard to remember and prone to error (one

incorrect character would invalidate it). To solve for this, users have seed phrases,

mnemonics that are typically 12 to 24 words, that are used to recover a private

key.

However, the primary issue with seed phrases is the "all or nothing" access they

provide. While they grant users full control over their assets, the loss of this seed

phrase translates to the irreversible loss of the assets contained within the

associated account. Users are thus burdened with the monumental task of

securely storing these phrases, often leading to anxiety and potential errors. The

onus of security entirely lies on the user, which can be a deterrent for less tech-

savvy individuals. Additionally, in targeted attacks, the seed phrase becomes a

single point of failure: once compromised, an attacker gains full access to the

user's assets.

38 - 93

The State of Web3 User and Developer Experience

Source

Ethereum

Ethereum utilizes a dual account system comprising Externally Owned Accounts

(EOAs) and contract accounts. At its core, EOAs, governed by private keys, facilitate

simple transfers and serve as the foundational interface for most individual users.

They facilitate routine transactions and the management of ETH, with popular

wallets such as MetaMask, MyEtherWallet, and Ledger Live primarily engaging

with these EOAs.

In contrast to EOAs, contract accounts are more complex as they, by de�nition,

have smart contract code. While they're capable of holding and dispatching Ether,

their true potency lies in crafting new contracts and executing operations as

stipulated by their code.

For users, Ethereum accounts are typically secured by a single seed phrase that

poses security challenges and makes the process of onboarding new users more

di�cult.

39 - 93

https://ethereum.stackexchange.com/questions/57231/how-to-use-mnemonic-to-recovery-my-ethereum-wallet

The State of Web3 User and Developer Experience

Ethereum ERC-���� Account Abstraction promises to solve this problem by

allowing users to use smart contracts for their accounts and identity instead of

just a single account-private key pair. This will allow users to use multiple signing

factors when authenticating to their account. While this does technically solve the

issue, it introduces a great deal of new complexity such as a new transaction type,

separate mempool, special “bundler” nodes, new “entry point” smart contracts,

and with potentially higher transaction fees. It remains to be seen whether

Ethereum can implement ERC-���� e�ectively.

Solana

Solana takes a unique approach to account management, integrating both data

storage and token ownership within its accounts.

In Solana's ecosystem, an account is more than just an address with a balance. It

is a mutable data structure that holds information like account ownership, data

for a particular program (akin to smart contracts in other ecosystems), or token

balances for various SPL (Solana Program Library) tokens. This �exible account

model allows Solana to execute high-speed transactions and supports its

scalability goals.

While accounts in Solana can be created by anyone, they must maintain a

minimum balance, known as "rent," to remain active. This mechanism ensures

e�cient memory usage and encourages optimal data management within the

blockchain, but can cause issues in user experience given the requirement for

maintaining a minimum balance.

Like Ethereum, accounts on Solana are secured by a seed phrase.

40 - 93

The State of Web3 User and Developer Experience

Aptos

At the core of the Aptos blockchain's asset management strategy is the

"resource," a fundamental construct from the Move language. The resource

approach introduces scarcity in representing assets and more easily enables

access control over the resource. Every account housed within the Aptos

blockchain is distinguishable by a speci�c ��-byte account address. What makes

these accounts more than mere repositories of assets is their ability to store data

in resources.

When an account is created, the only original resource are the core account

details, speci�cally the authentication key and the sequence number. As accounts

evolve, they accommodate more intricate resources, including Move Modules

(code) and state/data termeed Move Resources

Move Modules: These are crucial code devoid of data. Their primary function

is to encode the protocols that dictate the updates to the Aptos blockchain's

overarching state.

Move Resources: In contrast to Move modules, Move resources are centered

around data, without incorporating any code. Every piece of data stored as a

resource aligns with a particular type, a de�nition that is �rmly anchored in a

module residing in the blockchain's distributed database.

Like Ethereum and Solana, accounts are secured by a seed phrase, but on Aptos

there is the added ability to rotate keys, which allows a user to be able to re-

secure their account if their seed phrase or private keys are compromised.

41 - 93

The State of Web3 User and Developer Experience

Radix

In Radix's ecosystem, an account is not just a private-public key pair that is linked

to a record inside a developers’ smart contract. Instead, an account on Radix is an

on-chain container that “physically” holds tokens with customizable permissions.

This grants users full control over their assets, as the native tokens of Radix

physically live inside the account . Radix calls these “Smart Accounts”.

An account on Ethereum. Source

42 - 93

https://www.radixdlt.com/blog/comparing-virtual-machines-message-only-vs-asset-oriented

The State of Web3 User and Developer Experience

An account on Radix. Source

Radix’s Smart Accounts allow users to set up multifactor authentication and

recovery for their accounts with a combination of signing devices, such as

requiring multiple mobile phones or other devices such as Yubikeys to sign a

transaction or recover an account if one of the devices is lost or stolen. This native

multifactor functionality diminishes the vulnerability linked to a single seed

phrase. While seed phrases can still be used as a signing factor in the Smart

Account permissioning system, Smart Accounts can require multiple seed phrases,

or multiple other signing factors.

Smart Accounts’ multifactor authentication and recovery functionality is currently

live on the Radix Network today, although not yet implemented in the UX of the

wallet. It promises to be a groundbreaking innovation for end user safety.

43 - 93

https://www.radixdlt.com/blog/comparing-virtual-machines-message-only-vs-asset-oriented

The State of Web3 User and Developer Experience

Wallets

Ethereum's MetaMask is the industry's most commonly used digital wallet. For

many users venturing into decentralized �nance or collectibles, their �rst point of

interaction is often MetaMask, given its wide adoption and integration across

platforms.

Source: CoinGecko

44 - 93

The State of Web3 User and Developer Experience

MetaMask is a pivotal gateway to the Ethereum ecosystem. At its essence, it's a

multi-dimensional Ethereum wallet that functions as a conduit between users

and the Ethereum blockchain. With MetaMask, users can e�ortlessly manage their

ETH, engage with many Ethereum-based tokens like ERC-�� and ERC-���, and

�uidly interact with decentralized applications (dApps). Its design goes beyond

mere wallet functionalities, serving also as an interface for executing smart

contract functions and dApp interactions. This dual nature of being both a wallet

and an interaction portal makes it an invaluable tool for Ethereum.

The desktop version of MetaMask, available as a browser extension, boasts a

minimalist and intuitive interface. Its design elements prioritize user ease, o�ering

a clear view of balances, transaction histories, and token assets. Positioned

conveniently at the top-right corner of browsers like Chrome and Firefox, it

ensures users have swift access to Ethereum-based functionalities without

needing a standalone platform. One of its standout features is the seamless dApp

connectivity, where users can link their MetaMask wallet to various dApps,

enabling immediate interactions without redundant logins.

In parallel, the MetaMask mobile application o�ers a more comprehensive

experience tailored for on-the-go users. Upon launching the app, users encounter

a neatly organized dashboard that succinctly displays their ETH balance, recent

transaction activities, and a quick overview of token holdings. The mobile

iteration has also incorporated QR code functionality, a feature that signi�cantly

simpli�es asset transfers and dApp connections.

However, non-crypto natives may �nd storing large sums of funds in a browser

extension to be a strange and insecure experience. And there are challenges

associated with MetaMask such as the need to “import token”, as MetaMask does

not know what tokens a user holds, as it does not know which smart contracts to

look in.

45 - 93

The State of Web3 User and Developer Experience

Solana/Phantom

Navigating Solana, users rely on various wallets tailored for the platform.

Phantom and Sollet are among the most popular. These wallets provide a user-

friendly interface for managing SOL, Solana's native token, and other SPL tokens.

They also support interactions with decentralized applications built on Solana,

making them indispensable tools for the community.

Phantom, in particular, has garnered attention for its sleek design and seamless

integration with popular web browsers, making it a go-to for many users.

Additionally, with the growth of Solana's ecosystem, these wallets continually

evolve, introducing features like NFT displays and staking capabilities, enhancing

the overall user experience on Solana.

Recognizing the diverse usage patterns of modern users, Phantom o�ers

versatility across platforms. For web users, Phantom integrates by injecting a

'phantom object' into the JavaScript context. This allows web apps to engage

seamlessly with the wallet. Simultaneously, Phantom utilizes universal and deep

linking techniques for mobile users, facilitating smooth interaction between

mobile applications and the wallet.

The collaboration between Phantom Wallet and �Password brings forth several

advantages over Ethereum. First, access is notably simpli�ed. With �Password's

"Save in �Password" API, users can save their entire set of Phantom wallet

credentials, including private keys, directly to �Password. This reduces the hassle

of remembering complex login details, o�ering a uni�ed access point to digital

assets. However, this UX improvement comes at the cost of introducing additional

attack vectors, compromising a user’s self-sovereign control of their assets, which

kind of misses the point of Web�! The end user is always responsible for deciding

which ratio of convenience-to-security is appropriate for their needs.

46 - 93

The State of Web3 User and Developer Experience

47 - 93

The State of Web3 User and Developer Experience

Source

Aptos/Pontem

 is the leading Aptos wallet, o�ering a mobile version and a

browser extension. The mobile version maintains most of the wallet’s primary

features, including NFT management, a dApp exploration page, and in-wallet

swaps. All of this, combined with the wallet's native liquid staking and Ledger

support, allows users to have self-custodial control over their digital assets while

navigating the Aptos ecosystem.

Pontem Wallet

48 - 93

https://blog.1password.com/phantom-crypto-wallet-1password/
https://docs.pontemwallet.xyz/guide/introduction.html#account-management

The State of Web3 User and Developer Experience

49 - 93

The State of Web3 User and Developer Experience

Source

Additionally, there's a high degree of emphasis placed on delegation with the

Aptos design, giving users �exibility in their overall management and involvement

on the Aptos blockchain. Besides the APT serving as a delegation token to

validators, Aptos also supports private key delegation, an option not available on

most other blockchains. The private key delegation allows for the temporary

transfer of control over a wallet to a third party. The third party that the wallet

has been delegated to holds a speci�ed level of authority over the wallet, but the

original user ultimately has full control and ownership over the wallet and all

associated assets.

Pontem displays a comprehensive and forward-thinking approach to digital

wallets, especially in terms of its user-centric features. Both platforms, while

distinct in their o�erings, underline the necessity of evolving user expectations

concerning digital wallets.

Radix Wallet

The Radix Wallet mobile app is where the groundbreaking features of the Radix

Network are exposed to the user, such as the Transaction Manifest’s human

readable transactions and guarantees on deposits, native assets with transparent

behaviors, and soon-to-come to the Radix Wallet, the multifactor authentication

and recovery capabilities of Radix’s Smart Accounts, obsoleting seed phrases.

The Radix Wallet was developed in response to the problem of users putting large

sums in browser extensions, which are often insecure, and that users switching

between desktop and mobile sessions could not have a seamless, uni�ed

experience.

50 - 93

https://miro.medium.com/v2/resize:fit:1400/0*tzJsTTCuQ2p7LLui.png

The State of Web3 User and Developer Experience

To solve this, the Radix Wallet is a mobile app only, but can still provide users the

full power of a full screen desktop experience through Radix Connect. Radix

Connect is a desktop browser extension that can create an encrypted P�P link

between the mobile Radix Wallet app and a desktop session. This connector

extension doesn’t hold any funds - it serves only as a means to connect the

mobile wallet and desktop session when needed.

With the , users can leverage full screen desktop Web�/DeFi dApps,

but when it comes to signing a transaction, the desktop session will automatically

request the mobile app, and the user authorizes any requests on the mobile

combined with any relevant hardware wallets.

Radix Wallet

This improves security because the mobile app authorizing transactions is

segregated from the desktop browser navigating Web� and DeFi websites. And it

creates a single uni�ed experience where the wallet is always and only on your

phone. There is no desktop wallet - just the connector extension, therefore users

will always have their primary wallet with them at all times - even when they’re

on the go.

In future, Radix will also support deep linking so that users can experience Web�

and DeFi web dApps only on the phone.

51 - 93

http://radixdlt.com/wallet

The State of Web3 User and Developer Experience

Source

Web3 Identity and Login

Ethereum does not natively o�er much within the Web� identity or login space,

instead relying on builders and third-parties to experiment and develop solutions

atop the protocol. One such example is SpruceID. Within the decentralized

identity space, SpruceID has introduced an authentication solution known as

SIWE (Sign In With Ethereum). SIWE facilitates users to autonomously manage

their digital identity by leveraging EVM-compatible wallets. By adopting a

standardized sign-in work�ow, SIWE can integrate with both existing identity

services and Web� applications. This methodology doesn't only cater to the

emerging Web� applications but also provides potential integration points for

established Web� platforms. Importantly, SIWE provides this service without

requiring users to engage in blockchain transactions, thus removing any

additional associated costs. As an added layer, Web� platforms integrating SIWE

can provide an entry point for users unfamiliar with web�, without altering the

core user experience.

52 - 93

https://www.youtube.com/watch?v=5iSK3rTjPMw&t=1449s

The State of Web3 User and Developer Experience

The most popular implementation of Sign in with Ethereum is Metamask, which

can use one of your accounts to sign in to popular Web� dApps. For example, if

you had account �x����, then you would authenticate to the dApp with this

account without needing an on-chain transaction, using just cryptography. This

creates the potential for a passwordless future.

However, some drawbacks of this implementation on Ethereum is that, as with

any token holding account, authentication to the account is controlled by a single

seed phrase. If you lose that seed phrase, then you’ve permanently lost your

account, your identity, and your login.

Another prominent Ethereum-based Web� identity service is Ethereum Name

Service (ENS), a new naming system that translates user-friendly addresses, such

as 'alice.eth', into machine-recognized formats like Ethereum addresses and

content hashes. While similar in concept to the Internet's Domain Name Service

(DNS), ENS's structure is distinct, shaped by Ethereum's capabilities. Owners of

domains, like .̒eth’, can manage subdomains via smart contracts called registrars.

Moreover, ENS o�ers integration of pre-existing DNS names and allows owners to

con�gure subdomains at their discretion.

Solana

The most prominent wallet on Solana, Phantom, provides a multi-wallet system

that allows users to consolidate multiple Secret Recovery Phrases and private

keys from chains like Solana, Ethereum, and Polygon into a single wallet, with the

capability to manage up to 100 accounts. Users can easily migrate their existing

addresses from widely-used wallets such as MetaMask, Coinbase Wallet, and

Rainbow into Phantom.

For Web� login and identity, Solana provides , which operates

similarly to Sign-in With Ethereum.

Sign-in With Solana

The same drawbacks to Web� login and identity on Ethereum still apply to

Solana.

53 - 93

https://siws.web3auth.io/

The State of Web3 User and Developer Experience

Aptos

With traditional blockchains like Ethereum and Bitcoin, users' on-chain identity is

tied to their private keys. As empowering as it may sound, binding one's identity to

a private key poses signi�cant risks. Misplacing or compromising the key doesn't

just jeopardize your assets; it threatens your entire digital identity. While

temporary identities exist for privacy or development reasons, other solutions

beyond initial key creation are available. Aptos is one blockchain attempting to

incorporate these new solutions.

With Aptos, a user is not bound by a singular, immutable private key. Rather, Aptos

users can rotate or change the key (like in a scenario where that key has been

compromised), ensuring the security of their digital identity.

Additionally, Aptos incorporates multi-factor authentication across accounts.

Multi-signature authentication bolsters security and can act as a redundancy

system for blockchain data.

54 - 93

The State of Web3 User and Developer Experience

55 - 93

The State of Web3 User and Developer Experience

Pontem wallet with multiple accounts and hardware wallet connectivity. Source

As blockchain moves from a niche domain to mainstream acceptance, platforms

like Aptos, which prioritize the seamless integration of identity and security, will

lead the way. By catering to modern requirements, Aptos not only ensures the

safety of its users but also positions itself as a front-runner in the mission to

introduce the next billion users to Web�.

For signing into Web� applications with Aptos, Aptos has Identity Connect, which

allows users to sign in with their account (a speci�c address on-chain with a

corresponding key pair). Source

Persona Creation on Radix

Web� identity has grown in importance in the blockchain domain, focusing on

user privacy, authenticity, and autonomy. Radix stands out, particularly with its

"Personas" feature. Many traditional platforms link users to one digital identity,

potentially merging their activities across di�erent sectors. Radix's “Personas”

o�ers a solution to this limitation.

Users can set up distinct digital identities on the Radix platform for speci�c

purposes. For example, one persona could be for gaming, tracking achievements

and interactions, while another could be tailored for DeFi actions. Importantly,

these personas allow users to maintain privacy, ensuring di�erent activities don't

overlap. Additionally, as Personas are dedicated identities on the Radix Ledger,

there is no con�ating of a user’s token-holding account and their digital identity.

Those two concepts on Radix are separate and distinct, supporting more private

use of Web�.

56 - 93

https://pontem.network/posts/pontem-wallet-ledger-instruction
https://github.com/aptos-labs/identity-connect-docs/blob/main/Technical_Design.md

The State of Web3 User and Developer Experience

Furthermore unlike Ethereum or Solana, Personas will be able to be con�gured

with multifactor authentication and recovery, allowing them to be freed from the

all or nothing seed phrase that controls a user’s Ethereum or Solana identity. This

gives users far more assurance, as if they lose one device, there are still multiple

backups (or combinations of other signing factors) that can provide a user with

access to their account, bolstering security and recoverability.

Radix also o�ers storage of personal data in the wallet so that when a user needs

to share information with a dApp, they can do so at the time of the request. Web�

identity, as shown by Radix's "Personas," emphasizes interaction, privacy, and

autonomy. As the decentralized space advances, features focusing on user-centric

needs will likely set industry standards, with the user's needs and rights at the

forefront.

Summary

The Web� user experience to date has unquestionably been de�ned by Ethereum

and its ecosystem of EVM L�s, which utilize MetaMask and other wallets; and most

recently with the surge in popularity of Solana and its wallets including Phantom.

With the most users, liquidity, and dApps, these are the two user experiences that

lead the way in terms of adoption.

However, these user experiences do not come without signi�cant challenges.

Frequent hacks, frequent stories of users getting their wallet drained, and stories

of users losing their funds through lost or compromised seed phrases or blind

signed transactions are all too common.

Aptos and Radix bring a multitude of user experience bene�ts, including more

transparent transactions with Aptos’ transaction viability protection, and Radix’s

human-readable Transaction Manifest, which are fundamental to building

con�dence in use of Web�. With native assets and dedicated Personas for identity

and login Radix’s tokens follow predictable and transparent behaviors, further

increasing user’s trust in Web�.

57 - 93

The State of Web3 User and Developer Experience

By solving core problems in transparency, trust, and security holding back

mainstream adoption, Radix’s full suite of UX improvements stands it in a strong

position to onboard the next wave of non-crypto natives to Web�.

58 - 93

The State of Web3 User and Developer Experience

03

Developer

Experience �DX�

The State of Web3 User and Developer Experience

Developer Experience �DX�

Developers, the architects who build decentralized applications and systems, are

key to enabling the next phase of Web�’s growth. Their experience, DX, is what

allows them to build their business and application ideas into reality, with the aim

of doing so quickly, intuitively, easily, and securely. A good DX means a developer

can enter an ecosystem and construct projects, tools, protocols, and applications

quickly and safely.

To dissect the Developer Experience (DX) o�erings of Ethereum, Solana, Aptos,

and Radix, we have assessed them against the following two criteria:

 The ease with which developers can learn or

use a programming language to build Web� and DeFi dApps.

Language Adoption and Usability:

 The tools, SDKs, documentation, community

support, and other resources supporting developers. A rich ecosystem can

signi�cantly reduce development time and enhance the quality of dApps and

other blockchain projects.

Developer Tooling and Ecosystem:

Ethereum

Ethereum has signi�cantly in�uenced the developer experience in the blockchain

space. Central to Ethereum's architecture are its smart contracts, computer logic

that executes autonomously on top of a public ledger.

Developers begin their journey on Ethereum by writing smart contracts using a

speci�c programming language called Solidity. This high-level, statically typed

language is tailored for the Ethereum Virtual Machine (EVM) and provides the

syntax and tools required to create intricate decentralized applications (dApps).

Solidity's development environment o�ers features like inheritance, libraries, and

user-de�ned types, making it powerful and �exible.

60 - 93

The State of Web3 User and Developer Experience

Once a smart contract is drafted in Solidity, it's compiled into bytecode, which is

then deployed onto the Ethereum network. This deployment acts as a

transaction, sending the contract code to a special address. Once deployed, a

smart contract gets its permanent address on the blockchain.

Every smart contract action, whether updating a state or invoking a function,

requires a transaction. Developers use web� libraries, such as web�.js or ethers.js,

to interact with their smart contracts from external applications. These libraries

provide the necessary tools to create, sign, and send transactions and listen for

events emitted by smart contracts.

Furthermore, developers often streamline their work�ow by using platforms like

Tru�e or Hardhat. These frameworks o�er testing environments, smart contract

compilation tools, and network management capabilities, making deploying and

managing contracts more intuitive.

While Ethereum has provided a robust dApp development platform, developers

face challenges. The dynamic nature of gas prices, occasional network

congestion, and the complexities introduced by smart contracts and composable

dApps have led to both developer frustration but also .

Some common vulnerabilities in Ethereum smart contracts that have been

exploited are:

numerous bugs and hacks

61 - 93

https://chainsec.io/defi-hacks/

The State of Web3 User and Developer Experience

1. Re-Entrancy: One of the most common attacks in smart contracts, re-

entrancy consists of an attacker calling a function recursively in order to

damage the protocol, often by stealing funds.

2. Simple Code/Math Bugs: These occur when there is an error in a

mathematical formula or in the calculation process, such as rounding

mistakes.

3. Faulty Proof Veri�cation: Especially relevant in bridges and other cross-chain

protocols, this occurs when there is a faulty veri�cation proof on one chain

which allows the attacker to falsify actions on the other paired chain.

4. Incorrect Call Permissions Check: This vulnerability arises when the caller’s

ability to execute the function is not properly set. For example, a function

that should be executed only by certain roles is left open for anyone to call.

As a result of these vulnerabilities, while writing your �rst Solidity smart contract

can take only a matter of hours, it takes years to learn all the intricacies and

vulnerabilities in Solidity to be able to build secure Web� dApps, and even then,

new vulnerabilities continue to emerge, with user funds perpetually at risk, and

developers needing to dedicate substantial time and resources to validating and

auditing their code.

The impact of these issues cannot be overstated. Over $�Bn was lost in DeFi hacks

in 2022, and $�.�Bn in 2023. With such a large percentage of the ecosystem at risk,

regular and institutional users will �nd it hard pressed to �nd a compelling reason

to put signi�cant sums of their assets into Web� and DeFi, until these issues are

permanently solved.

Solana

The Solana development experience is signi�cantly in�uenced by its unique

architecture, particularly its parallel smart contract runtime known as Sealevel.

This technology sets Solana apart from other blockchain platforms like Ethereum,

which primarily use single-threaded runtimes.

62 - 93

The State of Web3 User and Developer Experience

A key aspect of Solana is its focus on optimizing transaction throughput on high-

performance, multi-core machines. This approach is driven by the observation of

an exponential growth in the number of cores in computers, prompting Solana to

design transactions that can be easily parallelized. This parallelization is a

fundamental feature of Solana's architecture, enabling it to process transactions

more e�ciently compared to traditional, single-threaded blockchain platforms.

The account model in Solana is notably di�erent from Ethereum. While Ethereum

assigns each smart contract its own storage within its account, Solana employs a

di�erent approach. On-chain programs in Solana are immutable accounts used

only to store executable bytecode. The actual state for these programs is stored in

separate, non-executable accounts. This segregation allows Solana developers to

design their smart contracts to be parallelizable. By spreading the smart contract

state across multiple accounts, these accounts can be used in parallel

transactions without data con�icts.

Solana's transaction processing is sophisticated and involves multiple

components. Each transaction must list all the accounts it will read from, write to,

and invoke as a program. This pre-listing enables Solana validators to know

which transactions can be processed simultaneously without con�icts. This

method allows for e�cient processing of transactions, leading to higher

throughput and lower fees.

Developing on Solana, however, poses certain challenges and complexities due to

this architecture. The need to consider how to parallelize transactions and

manage multiple accounts adds a layer of complexity that is less prevalent in

platforms like Ethereum. Developers are required to think meticulously about the

design of their on-chain programs and the associated accounts they will

manipulate. This leads to a steeper learning curve, but also opens up possibilities

for more e�cient and scalable applications.

63 - 93

The State of Web3 User and Developer Experience

While the Solana developer experience o�ers signi�cant bene�ts in terms of

scalability and e�ciency due to its parallel smart contract runtime, it also

introduces additional complexities in the development process. Developers must

adapt to a di�erent account model and the need for careful planning of

parallelizable transactions and state management .

Aptos

To address speci�c development challenges present in other blockchains, Aptos

embarked on the implementation of the Move language built as part of

Facebook’s Libra/Diem project.

At its core, Move introduces several novel concepts and features that distinguish it

from other blockchain programming languages. Firstly, it provides a type system

and resource-oriented programming model that ensures digital assets cannot be

cloned or accidentally destroyed. In Move, assets are represented as "resources," a

type that cannot be copied or implicitly discarded, ensuring their conservation

and integrity.

Moreover, Move is designed to be expressive and �exible, allowing developers to

de�ne custom resource types and write complex business logic for decentralized

applications. Additionally, Move's module system and ability to update code

dynamically make it adaptable, enabling continuous improvement and evolution

of smart contracts on the Aptos blockchain. These features make Move a powerful

tool for developers looking to build secure, e�cient, and scalable decentralized

applications.

64 - 93

The State of Web3 User and Developer Experience

One of the standout features of Aptos is its commitment to formal veri�cation, a

process that mathematically validates that software code aligns with

predetermined rules or properties. Through the Move Prover tool, Aptos provides

tooling for developers to test the integrity of their smart contracts. This tool is

adept at neutralizing potential threats within smart contracts, such as the

aforementioned double-spending and reentrancy attacks. By employing formal

veri�cation, Move Prover not only mitigates these speci�c threats but also detects

other coding anomalies, bolstering the overall stability of the system.

Furthermore, MoveVM's adoption of static dispatch for function calls o�ers an

additional layer of security against reentrancy attacks. This contrasts with the

Ethereum Virtual Machine's (EVM) dynamic dispatch approach. The distinction lies

in the timing of function calls during the program's execution. With static

dispatch, function calls are made at compile-time, allowing for an early error-

checking phase. This means that in MoveVM, smart contracts are veri�ed at an

earlier stage, e�ectively nipping potential reentrancy attacks in the bud.

Another key distinction between Aptos and Ethereum is the dynamic gas

management system. While Ethereum's gas fees can be unpredictable due to

network congestion, Aptos has integrated features like built-in gas price

estimators to o�er a more real-time, dynamic method to gauge transaction costs.

This dynamic estimation method gives developers a clearer picture of the

anticipated gas fees, allowing for better �nancial and technical planning.

Aptos also o�ers an advantage in terms of transaction prioritization. The

platform's bucket-based prioritization system enables developers to adjust

transaction priority through the gas unit price, granting them greater control over

the urgency of transaction processing. This stands in contrast to Ethereum, where

the gas fees directly impact transaction prioritization but often at the cost of

higher unpredictability.

65 - 93

The State of Web3 User and Developer Experience

When it comes to security during transaction simulation, Aptos mandates that all

signatures in a transaction must be set to zero. This security measure ensures no

potential misuse of a valid signature during the simulation phase, drawing a line

between simulation and real transaction deployment. Plus, in terms of the

developer environment, the integration of Aptos CLI's gas pro�ling feature is

notable. It o�ers a method for developers to understand gas consumption

without necessarily resorting to on-chain simulations, simplifying the overall

process.

Radix

Radix has built its own custom programming language, called Scrypto (based on

Rust), and execution environment, called the Radix Engine, which have been

tailored to meet the needs of Web� and DeFi developers.

Scrypto and Radix Engine were designed and implemented over 2019-2023,

following interviews with hundreds of dApp developers. The core principle

underpinning this design is the concept that on blockchains and public ledgers,

the key thing that matters is the asset, i.e. a token or NFT, and that their safety and

correct handling are paramount.

66 - 93

The State of Web3 User and Developer Experience

Scrypto and Radix Engine have therefore been designed speci�cally to include

tokens and NFTs as �rst class core primitives of the programming environment.

Radix describes this as “asset-oriented” programming. Here, tokens are not smart

contracts, but are distinct objects on the ledger, called “resources”. Similar to how

a physical object would behave, resources have properties and behaviors natively

understood and enforced by Radix Engine, ensuring that they obey certain

properties intrinsic to all assets, such as they shouldn’t be spent twice,

transactions should net to zero, and that they must physically live somewhere, in

containers called vaults for tokens at rest, and buckets while tokens are on the

move. Tokens and NFTs are therefore resources that sit inside smart contract

accounts or components, and they get passed between those accounts. Any time

an asset gets passed between an account, Radix Engine is guaranteeing the

accounting behind the transaction - ensuring that the correct assets get passed

and they don’t go missing or double counted.

This brings a number of advantages. First, standard things that developers need

time and again, such as minting a new token, de�ning the conditions under which

a token can be sent, whether a token can be recalled, or have its supply changed,

how a liquidity pool works, or how permissions are built, are all native features

built into the programming environment. This speeds up development time,

makes development more intuitive, and makes development more secure, as

Scrypto developers can draw upon this suite of native tools and con�gure them

to do what they need to do, knowing that these features will work out of the box.

It’s the di�erence between having a prede�ned set of tools available to support

you, as opposed to having to build each tool yourself. The Ethereum or Solana

developer experience instead requires developers to either build equivalent

functionality themselves, or copy and paste pre-existing code from online

libraries, such as OpenZeppelin, but this can also create security vulnerabilities if

any modi�cations need to be made.

67 - 93

The State of Web3 User and Developer Experience

The aim of providing this asset-oriented programming environment is to lower the

learning curve and time it takes for developers to build Web� and DeFi dApps,

reduce the likelihood for developers to make mistakes (as asset logic and

transactional accounting is handled by the engine, and other tools to speed up

developer productivity, such as permissioning, are available o� the shelf), and

improve security, as the engine is handling assets and permissions instead of a

developer’s custom-built smart contract.

In Scrypto, business logic and asset logic are segregated. The business logic is still

Turing complete and allows developers the full range of functionality to build any

dApp they want, but they can draw upon the suite of asset-oriented tools when

they need. This is similar to how game engines, such as Unreal Engine, provide

game developers native tooling for graphics and physics and libraries of in-game

elements, which still allows the game developer to build any game they want, but

the tooling signi�cantly reduces their learning curve, time required, and improves

the reliability of games.

How Uniswap works on Ethereum - passing complex chains of messages to

downstream smart contracts to update their internal balances, including the need

for “approve” transactions which introduces security vulnerabilities. Source

68 - 93

https://www.radixdlt.com/blog/the-problem-with-smart-contracts-today

The State of Web3 User and Developer Experience

How Uniswap would be built on Radix - “physically” sending tokens to the DEX,

and it physically sends other tokens back. Source

The added bene�t of having assets being natively understood by the execution

environment is that Radix transactions are not just a signed hash to a smart

contract, as with Ethereum, but are written in human-readable language, de�ning

how tokens move between accounts, and which smart contract calls to make.

69 - 93

https://www.radixdlt.com/blog/the-problem-with-smart-contracts-today

The State of Web3 User and Developer Experience

An actual transaction manifest. Source

70 - 93

https://twitter.com/radixdlt/status/1689305331082387456

The State of Web3 User and Developer Experience

Language Adoption and Usability

Solidity was crafted with a vision to bridge the gap between traditional

programming paradigms and the nascent realm of blockchain. The design of

Solidity was in�uenced by ECMAScript (JavaScript), allowing developers to

transition with relative ease. Solidity thrives on static typing, demanding explicit

declaration of variable types, a departure from contemporary languages. This

nuance enables early error detection at the compile-time, bolstering code

integrity, but as we have seen with billions of dollars of DeFi hacks, this alone has

not been enough to foster a secure Web� experience.

Central to Solidity's ideology is the concept of 'contracts.' In the Solidity domain,

this term, reminiscent of age-old legal documents, refers to structured blocks of

code. These blocks range from simple constructs, like tokens, to more elaborate

structures characteristic of extensive decentralized applications. Solidity also

re�nes the developer experience by introducing mechanisms such as code

inheritance. This feature enables foundational contracts to grow organically,

extending their functionalities through derivative contracts.

71 - 93

The State of Web3 User and Developer Experience

Source

Though Solidity is not without its challenges, its syntactic resemblance to

JavaScript has allowed new developers to easily familiarize themselves with the

language, and whilst it may be easy to build an initial smart contract, JavaScript

was not designed for the safe handling �nancial applications handling billions of

dollars, resulting in Solidity being di�cult to build complex and secure

applications in.

72 - 93

https://chainlinkgod.medium.com/the-layer-1-chain-rotation-thesis-a-retrospective-analysis-3cbd2dcdc1f8

The State of Web3 User and Developer Experience

As an illustration of its dominance, Solidity has carved itself a niche, becoming the

primary language for scripting smart contracts. Its open-source nature on

Ethereum equips developers to build atop these contracts, evolving them into

entirely distinct decentralized applications. Statistics indicate that contracts

written in Solidity govern over 90% of DeFi's Total Value Locked (TVL).

Solidity contracts hold 90%+ of DeFi TVL. Source

The Ethereum ecosystem's depth extends beyond Solidity. It has been the genesis

for several globally recognized standards, including:

ERC��/ERC���:

 Ethereum's token benchmarks

73 - 93

https://defillama.com/languages

The State of Web3 User and Developer Experience

Ethereum's JSON-RPC Client API:

 A blueprint for communicating seamlessly with Ethereum nodes

Ethers.js:

 A foundational web library tailored for Ethereum

Pioneering Cryptographic Practices:

including the Keccak��� hash algorithm and ECDSA signatures applied over

Secp���k�

While it's feasible to architect an EVM-compatible chain devoid of these standards,

adherence ampli�es developmental e�cacy and user experience. This

standardization fosters composability, equipping developers to leverage various

bene�ts.

Examples include Ethereum's Social Graph, facilitating shared metadata across

EVM chains, and interoperability elements, like cross-chain governance.

Furthermore, toolkits like OpenZeppelin, Hardhat, and Foundry, along with

infrastructural tools such as Gnosis Safe, WalletConnect, Zerion, Metamask, and

Etherscan, have cemented Ethereum's reputation, with 8 out of the top 20

blockchain ecosystems rooted in EVM.

74 - 93

The State of Web3 User and Developer Experience

Utility in the Ethereum Ecosystem

Thanks to Solidity’s “�rst-mover advantage” compared to newer chains, it has

developed certain advantages and o�ers more developer support tools than

other blockchains. Backed by a reservoir of comprehensive documentation and

the industry’s largest developer community, Solidity is the current de facto smart

contracting language. Tools like Remix, an online integrated development

environment, and Tru�e, o�ering frameworks to ease the Solidity development

lifecycle further, have become staples in the developer tool kit. Furthermore,

Ethereum's growing prominence paved the way for a deluge of educational

content centered on Solidity, creating a positive feedback loop for the developer

community.

Limitations

However, amid its accolades, Solidity faces its own set of tribulations. Despite its

widespread adoption, Solidity has been marred by security breaches, with the

infamous DAO attack of 2016 serving as a stark reminder. Although the entire

space (and code) has come a long way since then, the DeFi sector within the EVM

ecosystem continues to witness reentrancy attacks. In fact, re-entrancy is a core

enabling feature that many EVM dApps require in order to work, and so re-

entrancy exploits will continue to occur. These persistent threats underscore the

vulnerabilities that lurk within Solidity and the EVM.

The root cause of these issues stems from the platform’s lack of asset

standardization and guarantee on how tokens and NFTs behave, and complexity

thrust upon developers to learn the speci�cs of how Solidity and the EVM work.

EVM developers are required to build much of this complexity themselves from

scratch as they can’t re-use common logic, and thus even the slightest mistake

made can have disastrous results.

75 - 93

The State of Web3 User and Developer Experience

The result is that to build a complex and secure dApp, Solidity often presents a

steep learning curve, with the need to build things like permissions to each smart

contract from scratch - coding which addresses have access to which methods

directly within the smart contract. Lastly, while the mathematical veracity of

contracts is paramount, Solidity's innate toolset falls short in o�ering rigorous

formal veri�cation, though external tools have emerged to bridge this gap.

Solidity will continue to see many developers �ock to it despite these issues, due

to the EVM’s dominance, but more robust programming environments are needed

if Web� and DeFi are to gain the trust of mainstream users, and institutions, for

their day to day transactions.

Rust Language on Solana

Rust has captured signi�cant attention within the developer community for its

blend of performance, concurrency, and safety. Originating from Mozilla, it was

designed to deliver software that is not only fast but also immune to a vast array

of bugs which plague other languages. Rust's ownership system, along with its

borrow checker, ensures memory safety without necessitating a garbage collector.

This results in an inherently safer language while still achieving the performance

of languages like C and C++.

Unlike Ethereum and other blockchain platforms that have coalesced around the

Ethereum Virtual Machine (EVM) and its associated languages, Solana has charted

a distinct trajectory. Eschewing EVM compatibility, Solana harnesses the Low-

Level Virtual Machine (LLVM). The LLVM, a pivotal innovation in the programming

world, is a collection of modular and reusable compiler and toolchain

technologies. It acts as an intermediate representation, bridging the gap between

high-level code and machine code, allowing for optimal performance across

various hardware architectures.

76 - 93

The State of Web3 User and Developer Experience

Within Solana's architecture, Rust plays a pivotal role. Instead of conventional

"smart contracts", Solana employs the concept of "programs." These programs,

the equivalents of Ethereum's smart contracts, are predominantly written in Rust,

though C and C++ are also supported.

Solana's choice to utilize Rust as its primary programming language is deeply

rooted in its overarching objectives and the distinct advantages that Rust brings to

the table. One of the most compelling attributes of Rust is its prowess in

performance and concurrency. The language is engineered with e�cient memory

management and zero-cost abstractions, ensuring that any code executed is

optimized for speed. This complements Solana's emphasis on scalability, a vital

attribute in the blockchain sphere, where transaction speed and throughput are

paramount.

Rust, by nature, presents a steeper learning curve compared to some of its

counterparts, like Solidity. This complexity is a sieve, naturally appealing to more

experienced and professional developers. Solana Labs has been transparent

about its intention here: cultivating an ecosystem enriched by innovative, high-

quality projects. This strategy is in stark contrast to other platforms that

sometimes grapple with a deluge of derivative projects.

Solana contracts deployed over the last 3 years. Source

77 - 93

https://app.artemis.xyz/developers/on-chain

The State of Web3 User and Developer Experience

However, Rust on Solana, like Ethereum, does not provide developers with many

of the native tooling to reduce hacks and exploits and as a result, improve

developer productivity. Tokens on Solana are still smart contracts, which can have

mistakes and thus result in users’ loss of funds. Solana still relies on re-entrancy,

which introduces vulnerabilities.

Like Ethereum, much of the logic around how assets behave and how

transactions get accounted for is still built by each smart contract developer,

meaning that Solana developers are still required to spend signi�cant amounts of

time validating that their contracts are correctly implemented, and do not open

up security vulnerabilities.

Case in point, the root cause behind the $��m Cashio hack on Solana was

because a smart contract was fooled into believing that a fake asset had been

deposited. , Source Source

Move Programming Language on Aptos

With the blockchain economy facing many security breaches from smart contract

loopholes, persistent security concerns have led developers to search for more

appealing designs and programming languages. For this reason, Aptos has chosen

to use the Move programming language. Move is also used by other projects,

including:

Sui Network

Parachain

Celo

78 - 93

https://rekt.news/cashio-rekt/
https://www.radixdlt.com/blog/rekt-retweet-1-why-the-48-million-cashio-hack-on-solana-could-never-happen-on-radix

The State of Web3 User and Developer Experience

Move is a new smart contract programming language that emphasizes safety and

�exibility for developers. In Move, re-entrancy is not required, and thus it’s

disabled, solving for many types of hack and exploit. Furthermore Move integrates

formal veri�cation within its development process, providing an advantage to

projects such as Aptos, as it helps to ensure the security of the code being used

within the earliest stages of product development. A core function of the

language, Move Prover, is the veri�cation tool and assures developers that their

code is correct.

Move is memory-safe, expressive, and based on the widely used Rust

programming language. This helps to make it a more attractive option for

developers as there's crossover knowledge from Rust to Move. This is less

applicable to other languages, such as Solidity. Theoretically, this can help Aptos

attract more development talent to its ecosystem.

79 - 93

The State of Web3 User and Developer Experience

Furthermore, Move's design facilitates parallel transaction processing. On the

other hand, EVM's sequential transaction processing, a measure to counteract

double-spending and reentrancy threats, often leads to congestion.

Solidity holds the upper hand in terms of smart contract upgradability, as Solidity

provides developers with the latitude to upgrade protocol and contract codes, an

option that Move purposely curtails.

Move brings many safety innovations to the table, while at the same time

improving developer productivity, with its use of objects (as opposed to the

account-based model for Ethereum and Solana). With the Aptos Coin Standard,

Aptos works similarly to Solana. It uses a common set of code (APC) for di�erent

types of tokens like digital currencies, collectible items, and semi-fungible tokens

(which are like a mix of currencies and collectibles). Instead of writing new code

for each token, developers run a function in the existing code with the details

about their token.

80 - 93

The State of Web3 User and Developer Experience

However, ultimately these tokens are not native to the underlying blockchain,

and thus developers are still responsible for ultimately ensuring that their tokens

behave correctly, get accounted for correctly, and are validated correctly. This

ultimately slows the development process as developers are responsible for

building this code, validating it, and auditing it. Issues in the implementation of

tokens are still possible, and from a UX perspective still raises the possibility for

malicious tokens.

Scrypto Smart Contract Language on Radix

Scrypto retains most of Rust's features while incorporating speci�c functions and

syntax for the Radix Engine. However, Scrypto is more than just Rust operating on

a public Distributed Ledger Technology (DLT) network. It's an asset-oriented

language that allows Rust-style logic to interact with data and assets natively,

making it a perfect match for building decentralized �nance (DeFi) applications.

As mentioned in the introduction to Scrypto and Radix Engine, together they

provide developers �rst class native tools and features to speed up the

development process, reduce the chances for bugs and hacks, and to onboard

new developers more quickly with a more intuitive “physical” approach to

representing assets. Like Move, re-entrancy is not required in Scrypto.

A few of these features include:

In Scrypto, tokens and non-fungible tokens (NFTs)

are not smart contracts or components but are treated as resources. To create a

new resource, like a token or an NFT, you can utilize a built-in Scrypto function to

specify the parameters of that resource. The newly created resources are

immediately stored in a temporary container called a bucket, which eventually

needs to be transferred into a more permanent container known as a vault for

further storage. Vaults have special logic in place that validates whether tokens

received are valid.

Resources, Buckets, and Vaults:

81 - 93

The State of Web3 User and Developer Experience

Radix has two types of smart contract,

which begins life as a “blueprint” which can be instantiated into one or many

"components."

Blueprints, Components and Methods:

A blueprint is like a template for smart contract functionality. They don’t hold any

state - they are purely a de�nition of what functionality a smart contract should

do.

Once a blueprint has been deployed, components may then be instantiated from

that blueprint. The Scrypto code is present in the blueprint; but the component's

actual state - its data and resources - belongs exclusively to that individual

component, not the blueprint. Once a component is instantiated from a

blueprint, it becomes active for use on the network by users or other components.

Blueprints foster the reusability of Scrypto code and o�er developers vast

�exibility in performing various setup and con�guration actions.

As an example, you may have a blueprint for a DEX liquidity pool, that de�nes

how swaps between two assets may be conducted. And then a developer may

instantiate that blueprint into a component for an XRD:USDT pair, or another

component for an XRD:ETH paid, etc. This way you can have greater assurance

over how each component will behave, as you are directly instantiating it on

ledger (as opposed to copying and pasting and then directly editing smart

contract code on Ethereum and other platforms).

One special feature of components is that they have special methods that allow

them to directly accept resources, i.e. a token. This new approach provides a

much more intuitive way of handling assets, as components are physical

containers for tokens, and provides a far safer way to transfer assets, as the

execution environment is handling the transaction accounting.

82 - 93

The State of Web3 User and Developer Experience

One pain point that Scrypto solves elegantly is in the use of “badges”

for permissioning. A badge is like any other resource, i.e. a token or NFT, but it is

used for permissions. So for example, a user could hold a badge NFT that gives

them special discounts on trading fees for a DEX. A developer could hold a special

administrator badge that provides them privileged access to a smart contract, e.g.

to update an important parameter. Furthermore Radix makes use of native role

based access control, which maps access to speci�c methods to roles, simplifying

the process of de�ning which roles can do what when it comes to accessing a

smart contract component. This is in stark contrast to how permissions are set up

on the other three platforms in this report, where developers are required to build

the low level systems for how permissioning works themselves, with mistakes in

these low level systems sometimes resulting in hacks, exploits, and loss of

developer productivity.

Permissions:

 As previously alluded, transactions on Radix take advantage

of the unique capabilities of the Transaction Manifest, which is how transactions

on Radix are written. Unlike Ethereum,Solana or Aptos, where a transaction is a

call to a single smart contract, which then executes calls downstream, on Radix,

the Transaction Manifest is able to interface with each smart contract component

in turn, specifying how tokens move between accounts/components, and

specifying which component methods to call.

Transaction Manifest:

All of these actions must execute successfully, or the entire transaction is aborted

by Radix Engine. This allows Radix developers to build far more composable

applications, as the standardization of how the Transaction Manifest de�nes how

tokens move reduces complexity. It also provides Radix developers the ability to

build applications purely in the front end of a website that can interact with

multiple smart contracts, specifying conditions that must be met, such as this

transaction must return at least X tokens, otherwise the entire transaction fails

safely, in an “atomic” manner.

83 - 93

The State of Web3 User and Developer Experience

Radix has also implemented an automated Developer Royalties System,

that pays developers on-chain when their smart contract code gets used. This

creates an additional and recurring incentive mechanism for developers to create

core blueprints and components that get used.

Royalties:

Overall, Scrypto provides a syntax that has been speci�cally designed to make it

easy for developers to be able to create and manage tokens and NFTs in an

intuitive and safe way, clearly separating the underlying logic that governs assets

from the business logic that de�nes how their dApp should function. Features

such as badges and native role based access control for permissioning ensure that

access rights to smart contracts are more intuitive, easily set up, and safely

con�gured. The Transaction Manifest provides developers a powerful way to build

certain types of dApp purely in the front end of websites, without needing to

deploy smart contracts just to execute complex transactions.

84 - 93

The State of Web3 User and Developer Experience

04

Developer Tooling

and Ecosystem

The State of Web3 User and Developer Experience

Ethereum

Ethereum's prominence in the blockchain landscape is underpinned by its

expansive developer ecosystem, tailored to accommodate the diverse needs of

decentralized application (DApp) development. The platform's development

frameworks o�er comprehensive infrastructures, making it accessible for

developers of various backgrounds, whether from a JavaScript or Python milieu.

This versatility ensures a smoother and more e�cient DApp development process,

inviting novice and veteran developers to innovate on the platform.

In addition to these frameworks, Ethereum boasts a suite of tools geared towards

seamless compilation and e�ective dependency management. Developers can

utilize preprocessors, �attening tools, and specialized libraries to ensure smart

contracts are e�ciently compiled, and their interdependencies are seamlessly

integrated. Given the criticality of security in a decentralized environment,

Ethereum's toolkit also emphasizes robust security assurance through bytecode

scrutinizers, static analysis, and symbolic execution analyzers. Such tools are

invaluable in ensuring the smart contracts deployed are resilient against

vulnerabilities.

Recognizing the dynamic nature of blockchain-based applications, Ethereum also

o�ers real-time monitoring and analytics tools. These solutions provide granular

insights, allowing developers to identify and address any operational challenges

quickly.

Standardization remains a pivotal aspect of Ethereum's developer ecosystem,

with the ERC (Ethereum Request for Comments) repository playing a vital role.

These standards, which span diverse facets from token speci�cations to

blockchain identities, foster consistency and interoperability across applications.

The rich tapestry of libraries in the ecosystem o�ers developers pre-built modules

and smart contracts, optimizing development time and ensuring adherence to

best practices.

86 - 93

The State of Web3 User and Developer Experience

Source

Solana

The emergence of Solana as a viable alternative is noteworthy due to its design,

transaction speeds, and less saturated developer space. One of Solana’s

signi�cant moves has been partnering with Alchemy. This collaboration aims to

enhance the development experience on the Solana blockchain, with Alchemy

o�ering full support and resources to developers working with Solana.

Key components in Solana's development toolset include:

Solana Tool Suite:

 An essential set of tools for any developer looking to build on Solana. It’s a

foundational step, setting up the environment and enabling interaction with

various other tools like Anchor.

87 - 93

https://www.developerreport.com/ecosystems/ethereum

The State of Web3 User and Developer Experience

Rust:

 Given that Solana is built on Rust, understanding this language is crucial. Rust is

known for its speed and stability and is the primary language for Solana-based

development.

Anchor:

 This is a development framework tailored for Solana. It o�ers pre-written code

structures and security protocols, simplifying the process of creating and

deploying applications on the Solana blockchain.

Additionally, other tools facilitate specialized functionalities:

Web�.js:

 A JavaScript API that allows developers to interact with the Solana blockchain

SPL-Token:

 A package enabling developers to mint, transfer, and manage tokens on the

Solana platform

Wallet-Adapter:

 This facilitates the integration of Solana-based wallets into decentralized

applications

Support for developers is abundant in the Solana ecosystem. Platforms like the

Solana and Anchor Discords provide community-based assistance, while

resources such as Solana's tutorials and hackathons o�er practical learning

experiences.

88 - 93

The State of Web3 User and Developer Experience

Source

Aptos

Aptos has meticulously cultivated an expansive developer ecosystem, mirroring a

tree's vast roots. It provides a fertile ground for projects to grow, thanks to a

comprehensive set of developer tools tailored for versatility and innovation.

89 - 93

https://www.developerreport.com/ecosystems/solana

The State of Web3 User and Developer Experience

Understanding the importance of an e�cient Integrated Development

Environment (IDE), Aptos has seamlessly integrated with renowned platforms like

VSCode and IntelliJ IDEA. These platforms not only o�er familiarity but also

optimize the work�ow for developers. Complementing this is Aptos's SDK

Development Framework, which presents a rich tapestry of options. The Move

Playground, for instance, o�ers a sandboxed space for innovative

experimentation. In terms of language support, Aptos proudly o�ers SDKs in

popular languages such as Typescript, Python, and Rust, ensuring wide

accessibility.

For a deeper dive into the blockchain, the Blockchain Access Browser introduces

tools like Aptos Explorer, TraceMove, and Aptoscan. These are crucial for

visualizing intricate on-chain activities and interactions. In a decentralized

ecosystem, data accessibility and retrievability are paramount. Aptos addresses

this by integrating robust Node and Archive Services, including NodeReal, Ankr,

and Moralis.

The Aptos Developer Documentation further emphasizes their dedication to a

thriving developer community. This comprehensive guide assists developers at

every skill level, covering a gamut of topics from basic setups to the nuances of

the Move programming language. Aptos champions community engagement

through platforms like Discord, Stack Over�ow, and Twitter, fostering

collaboration and open-source development.

90 - 93

The State of Web3 User and Developer Experience

Source

Radix

Radix has recognized the immense potential of decentralized �nance (DeFi) and

aims to make it accessible and scalable. It has created a seamless synergy

between its primary smart contract language, Scrypto, and a suite of robust

toolkits, laying a comprehensive foundation for developers.

The Radix dApp Toolkit exempli�es the platform's commitment to user-centric

design. It bridges the user experience between the Radix Wallet and decentralized

applications (dApps). The integration of the Wallet SDK and Gateway SDK within

this toolkit facilitates a consistent and intuitive interaction model. With the Wallet

SDK, dApps are able to maintain a bi-directional communication channel with the

Radix Wallet, ensuring users can �uidly transact and interact with dApps while

retaining the security and integrity of their holdings.

91 - 93

https://www.developerreport.com/ecosystems/aptos

The State of Web3 User and Developer Experience

In addition to front-end utilities, Radix's Radix Engine Toolkit (RET) stands out as a

pivotal asset for back-end development. Crafted in the Rust programming

language, it streamlines complex tasks such as transaction manifest creation and

SBOR encoding/decoding. What's noteworthy is RET's adoption of UniFFI,

broadening its compatibility to encompass languages like C#, Kotlin, Swift, and

Python. This �exibility showcases Radix's vision of fostering a diversi�ed developer

ecosystem, recognizing that innovation often stems from a varied technological

background.

One intriguing innovation is the introduction of ROLA (Radix O�-Ledger

Authentication). Devising a system that operates o�-ledger while harnessing on-

ledger data is a testament to Radix's ability to blend decentralized and traditional

technologies. ROLA allows dApps to authenticate their users against on-chain

identities, streamlining dApp creation. It functions similarly to the new Web�

passkeys marking "the beginning of the end of the password" - but by using

Radix's on-ledger recovery, it doesn't require trusting a centralized service with

key backup and syncing. This introduces a dimension of trust and security that

stands apart in the blockchain landscape.

It’s also worth noting Radix’s commitment to fostering a strong, engaged

developer community. The Radix Developer Program, paired with active

engagement on platforms like Discord and Telegram, exempli�es this. It’s not

merely about providing tools; it's about facilitating knowledge exchange,

ideation, and collaborative growth. The Technical Docs empower developers by

elucidating the intricate features and speci�cations of the platform.

The Babylon release itself was a monumental step, paving the way for the

deployment of Scrypto-based smart contracts and heralding an era of enhanced

DeFi capabilities on Radix. However, Radix's forward-looking approach doesn’t

stop there. The subsequent Xi’an release promises even greater strides, with the

complete implementation of the Cerberus consensus protocol, a potential game-

changer in the quest for boundless scalability.

92 - 93

The State of Web3 User and Developer Experience

Source

Summary

For DX, Ethereum’s ecosystem is comprehensive, catering to a diverse range of

developers from various backgrounds. Aptos o�ers a multi-language supportive

environment coupled with renowned Integrated Development Environment (IDE)

platforms, making it a fertile ground for developer innovation. Solana's

collaboration with industry players like Alchemy indicates its ambition to provide

top-tier tooling capabilities. However, Radix sets itself apart with native tooling for

assets, transactions and permissions that greatly simpli�es and accelerates the

development process, making it easier to build secure dApps in a fraction of the

time.

93 - 93

https://www.developerreport.com/ecosystems/radix-dlt

Disclaimer:
https://www.cryptoeq.io/disclaimer

The content in this PDF is for informational purposes only and is not intended to
provide tax, legal, accounting, financial, investment, or professional advice. The
document is not an investment advisor nor any sort of financial advisor, nor is it
undertaking to provide investment advice, act as an advisor to, or give advice
in a fiduciary capacity to any reader or individual with respect to the informa-
tion presented herein. You should not construe the information provided in this
PDF as investment advice, financial advice, trading advice, or any other advice.
The information contained in this document is general information, and person-
alized information is not provided. The document does not give individual or
personalized recommendations that any cryptocurrency be bought, sold, or
held by any readers. None of the information or content in this document is (or is
intended to be) a solicitation or o�ering of any security to any person or entity.

Investing involves substantial risk, and the document makes no guarantee or
promise as to any results that may be obtained using the information from the
PDF, either directly or indirectly. Di�erent types of investments involve varying
degrees of risk, and there can be no assurance that any specific investment will
either be suitable or profitable for any reader's portfolio. Readers should consult
their financial advisor or investment advisor and conduct their own research
and due diligence before making any investment decisions.

The information provided in this PDF (including any separate documents that
may be referenced within this PDF) is not directed at any investor or category of
investors and is provided solely as general information. The document provides
all information "as is" and without warranties of any kind. The publisher will
strive to provide accurate information, but it is not responsible for any inaccu-
rate or missing information. By accessing the information in this PDF, you
expressly acknowledge and accept all risks and liability associated with the use
of the information provided. To the maximum extent permitted by law, the
publisher disclaims any and all liability in the event any information, commen-
tary, analysis, opinions, or other information provided in the PDF prove to be
inaccurate, incomplete, or unreliable or result in any investment or other losses.

This publication is sponsored. CryptoEQ neither endorses nor assumes responsi-
bility for any content, accuracy, quality, advertising, products, or other materials
presented on this page. Readers are advised to conduct their own research
before engaging in any activities related to the company. CryptoEQ disclaims
any direct or indirect liability for any damage or loss arising from or allegedly
caused by the use of or reliance on any content, goods, or services mentioned
in the PDF.

About CryptoEQ

Crypto is complex. We make it simple.

CryptoEQ is an independent cryptocurrency analysis and rating agency that
provides unbiased, objective, and transparent research you can trust. We help
people navigate their investment journey and trading decisions. Our propri-
etary algorithms, exhaustive research and helpful community are key to our
success as we follow strict principles and ethics to deliver honest information.
We actively seek to identify scams and low quality nefarious projects relieving
you of that burden.

	7dc56d8217de02f4ff7d3b4dc6186ba6a4413ef15aef241d66473afd4399a257.pdf
	ff07028dcd3b17864bf841241602ffa4e13ab36fc03fa7b1d17fcd3eb78593f9.pdf

	radix info copy 3000
	7dc56d8217de02f4ff7d3b4dc6186ba6a4413ef15aef241d66473afd4399a257.pdf
	ff07028dcd3b17864bf841241602ffa4e13ab36fc03fa7b1d17fcd3eb78593f9.pdf

